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CORBYS Definition of Terms 

Term Definition 

CORBYS Demonstrators  

The 1st CORBYS Demonstrator 

(Demonstrator I) 

Mobile Robot-assisted Gait Rehabilitation System 

The 2nd CORBYS Demonstrator 

(Demonstrator II) 

Reconnaissance Robot for Investigation of Hazardous 

Environments – (RecoRob) 

CORBYS Roles  

User Any user interacting with the CORBYS system, for 

example, 

In the case of the gait rehabilitation system, users with the 

following roles: a patient, a therapist or an engineer; 

In the case of reconnaissance robot, users with the 

following role: (tele)operator or a hazardous area 

examination officer. 

CORBYS End-user The companies/entities that use/exploit (aspects of) 

CORBYS technology in their commercial products or 

services. 

Mobile Robotic 

Gait 

Rehabilitation 

System Roles 

Patient The person receiving gait rehabilitation therapy aided by 

the CORBYS system 

Therapist The medical professional configuring and assessing 

rehabilitation therapy aided by the CORBYS system. 

Engineer A professional dealing with the CORBYS system based on 

a need to carry out technical maintenance, repairs or 

system configuration. 

Reconnaissance 

Robot for 

Investigation of 

Hazardous 

Environments 

Roles 

Operator The person steering the robot by remote control 

 

Hazardous Area 

Examination Officer 

The person that robot follows in a team work on 

investigation of hazardous areas 

Engineer A professional dealing with the CORBYS system based on 

a need to carry out technical maintenance, repairs or 

system configurations.  

CORBYS Domain Knowledge 

Sensor Fusion Method used to combine multiple independent sensors to 

extract and refine information not available through single 

sensors alone. 

Situation Assessment Estimation and prediction of relation among objects in the 

context of their environment. 

Cognitive Control Capability to process a variety of stimuli in parallel, to 

“filter” those that are the most important for a given task to 

be executed, to create an adequate response in time and to 

learn new motor actions with minimum assistance 

(Kawamura et al., 2008). 

Human-Robot Interaction Ability of a robotic system to mutually communicate with 

humans. 

Neural Plasticity 

 

Ability of neural circuits, both in the brain and the spinal 

cord, to reorganise or change function. 

 

Cognitive Processes Processes responsible for knowledge and awareness, they 

include the processing of experience, perception and 

memory.  

CORBYS Technology Components 
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SAWBB Situation Awareness Blackboard 

SOIAA Self-Organising Informational Anticipatory Architecture 

User Interface User interface designed to meet the needs of the various 

users in exchanging information between the robot and 

human user 

Brain Computer Interface (BCI) The sensor system measuring the brain waves using EEG 

and detecting patterns identifying movement actions 

Human Sensory 

System (HSS) 

HSS The sensors measuring aspects of the human physiology 

and movement patterns 

Chest Unit (CU) Sensor unit located at chest of patient. 

IMU Sensor Unit Sensor unit located at back of patient 

Chest Belt Belt around patient chest with Chest Unit at front and IMU 

Sensor Unit at back. 

HSS Controller Computer and software system that receives data from 

HSS sensors and forward these to the General Purpose 

Network. 

Low Level Control Localised control of actuators, usually torque, current or 

position control. Sensory data is passed to the real-time 

control, actuation commands are calculated and sent to the 

actuators. 

Smart Actuators Highly integrated mechatronic units incorporating a motor 

and the complete motion control electronics in one single 

unit.  

Generic CORBYS Robot Control Components 

Cognitive System Incorporates situation awareness and intention detection to 

enable optimal man-machine interaction towards 

achievement of set goals in the specific usage context. 

Executive Layer The executive layer is responsible for translating the high-

level plans (cognitive inputs) into low-level actions, 

invoking actions at the appropriate times, monitoring the 

action execution, and handling exceptions. The executive 

layer can also allocate and monitor resource usage. 

Communication Server Manage subscriptions of sensor data between different 

control modules. The sensor data to the cognitive modules 

are not flowing through the Communication Server, but are 

forwarded directly. 

Task Manager The task manager manages operation modes to be executed 

by the system. Performs specific tasks when the operation 

mode is changed. 

FPGA Reflexive Module 

 

Field Programmable Gate Array (FPGA) based hardware 

subsystem of Situation Awareness architecture (SAWBB) 

for acceleration of robot reflexive behaviour. 

Safety Module Verification that actuator output is in line with the 

commanded output and that it satisfies safety-related 

position, velocity, current and/or torque constraints. 

Real-Time Data Server Real-time data server is a software module responsible for 

communicating sensor data from real-time (RT) bus to 

other software modules. This excludes communication of 

RT modules with sensors and actuators which 

communicate with sensors and actuators directly, in order 

to preserve RT control behaviour. 

Real-Time Network (RTN) Sensor network for real-time, safety critical data 

transmission 

General Purpose Network (GPN) Network for robot control and interface to the cognitive 
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modules 

Demonstrator specific Technology Components 

Mobile Robotic 

Gait 

Rehabilitation 

System 

Pelvis Link Mechanical interface between the mobile platform and the 

powered orthosis equipped with an appropriate actuation 

and sensing system. 

Powered Orthosis Exoskeleton system to help the patient in moving his/her 

legs and receiving an appropriate rehabilitation therapy. 

Mobile Platform The platform for the entire system, including pelvis link, 

powered orthosis, necessary computational, storage, and 

power supply modules, as well as motored wheels for 

movement 

Reconnaissance 

Robot for 

Investigation of 

Hazardous 

Environments 

 

Vision System Cameras of the 2nd demonstrator used for environment 

perception including human tracking 

Robot Arm 7DOF lightweight robot arm mounted on the mobile 

platform used for the object manipulation (for 

contaminated area sample drawing) 

Mobile Platform 

 

Mobile platform of the 2nd demonstrator which consists of 

a variable drive system that is equipped with chains. It is 

used for the mounting of the robot arm and sensors for 

environment perception as well as sensors for platform 

navigation and robot arm control. Containers for samples 

are also placed on mobile platform 
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1. Executive Summary and Scope 

1.1 CORBYS Project Aim 

The aim of the CORBYS project is to develop a cognitive robotic framework to support the interaction 

between robots and humans. The framework should be applicable to different types of robot-human 

interaction scenarios, specifically to the two developed in this project, 1.) a novel robot assisted gait 

rehabilitation system consisting of powered orthothis and mobile platform, and 2.) a robot that accompanies 

a human while navigating in difficult or dangerous terrain.  

One of the project’s objectives is the development of the “Self-Organising Information Anticipatory 

Architecture” module (SOIAA) which utilises information theory based methods and formalism to address 

some of the cognitive challenges in robot-human interaction. 

The core of SOIAA is the empowerment formalism, developed by (Klyubin, Polani, & Nehaniv, 2005a), 

which provides a goal and context independent approximation of utility, for an arbitrary state of the 

environment. The main hypothesis SOIAA is based on is that humans and other cognitive agents try to 

maintain a high level of empowerment, and therefore select actions in order to move along high-empowered 

trajectories through the observable state space of the human-robot system.  

By calculating those high-empowered states and trajectories, and the associated human actions required to 

attain them, SOIAA is then able to identify possible candidate actions for the anticipated human behaviour.  

1.2 Scope and Aim of the Deliverable 

The current deliverable 5.1: “Self-motivated gait and goal generation” focuses on the development of the 

empowerment formalism. Subsequently this report will also focus on the development, testing and 

implementation of the empowerment framework, which plays a central role in the overall SOIAA 

framework. As we will detail later, empowerment is a task independent utility function, and will thereby 

provide goal structure to the environment, even if there is no current task. This is, in essence, what is meant 

by self-motivated goal generation, the provision of a utility function to any kind of environment, regardless 

of a current task, and solely dependent on the sensory-motoric structure.  

Two limitations should also be pointed out. When we talk about the generic applicability of empowerment 

we mean that empowerment can be calculated for a wide range of robotic configurations. We do not mean 

to imply that empowerment is always, in any case the best solution. As we will later detail in the section on 

applications of empowerment, there is a wide range of useful and reasonable generic functions that 

empowerment can perform, but maximisation is not always the best course of action. In particular, 

predetermined goal structures can be at odds with empowerment, in such cases a robot that has predefined 

goals might find that the actions leading to that goal are not the ones most empowered. In this case, the 

specific goal should have precedence. So, as a result, empowerment cannot be used to solve every problem.  

Furthermore, this deliverable provides the self-motivated goal generation, in form of a task independent 

utility function, but does not yet deal with intention extraction, which should be provided by deliverable 5.2. 

At a later stage in the CORBYS project, this goal structure should be used to both regularize the state space, 

and bias the possible goals of an agent, but this is not within the scope of the current deliverable. Fig. 1. 

provides an overview of how the empowerment module fits into the general SOIAA architecture. So, 

currently all we will provide is algorithms to determine the empowerment landscape of either a robot or 

human agent.  
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The prototype associated with this deliverable is, in essence, a software module which provides both offline 

and real time algorithms to compute empowerment, as well as the needed support functionality, such as 

model learners, data input, etc. The functionality of this module is to provide the empowerment values for 

both the current state and reachable states in the near future to allow us to determine both high-empowered 

states, and trajectories. As we assume that cognitive agents, including humans, try to maintain and increase 

their empowerment, those high empowered states are then treated as a set of potential goal states and/or 

target trajectories. Part of the work reported in this deliverable is our scientific investigation of the 

properties of empowerment, and especially of continuous empowerment, in order to evaluate our central 

hypothesis. Our evaluations in this area provide strengthened evidence for the aforementioned core 

hypothesis, of which we will make use in this project.  

Furthermore, this deliverable also outlines our efforts to adapt the existing empowerment formalism to the 

robotic domain. Most previously existing empowerment applications only dealt with discrete worlds, and 

were extremely time-consuming to compute. Our work on the present task has been to develop much faster 

approximations of empowerment which are also able to deal well with the continuous domain.  

Finally, our scientific agenda in this project depends on the successful integration of the SOIAA module in 

general and the empowerment module in particular into the overall CORBYS framework. To illustrate this, 

we have also included a section that outlines our proposed integration. This will also allow our partners as 

well as, where there is interest, external users to utilize the current empowerment implementation.  

 

Fig. 1 An overview of the functional dependencies of the SOIAA Module, both internal and external, focussed on the 

first CORBYS demonstrator, gait rehabilitation system.  

The sections highlighted in red in Figure 1 are those included in deliverable 5.1. This particular schematic 

is aimed at illustrating the functionality of SOIAA in the first demonstrator, as is obvious from the blocks 

relating to medical gait requirements. However, the empowerment module is designed to be generic and 
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will be identical in each demonstrator. The figure demonstrates that while empowerment is providing input 

to several later functionalities of SOIAA, it is not necessary for all later modules. Additionally, the figure 

clarifies that the empowerment module does not address task 5.2, the identification and anticipation of 

human behaviour.  

1.3 Overview 

The remainder of the report is structured into three main parts. Section 2 gives a general introduction into 

empowerment, the core principle behind this deliverable, and introduces the general idea and framework. It 

also outlines the possible applications for empowerment in a cognitive framework, both for the two specific 

CORBYS demonstrators, and in generic settings.   

The next section introduces empowerment formally as the channel capacity between an agent’s current 

actuator and future sensor states, and it furthermore outlines the technical details of empowerment. This 

section also presents most of the advances that UH has made in extending the existing empowerment 

methods. In order to make empowerment better applicable to a robotic context, we looked at extending 

empowerment into the continuous domain, with the specific intent to accelerate the computation of 

continuous empowerment to a sufficient level for it to be able to be realistically deployed in real time. 

Furthermore, we also developed methods for empowerment to utilize Gaussian process learners as model 

learners, and to interface with the resulting Gaussian process without empowerment calculations.  

The fourth section deals with the technical aspects of integrating the empowerment module into the overall 

cognitive framework of SOIAA and CORBYS. We will outline the main function of the currently 

implemented empowerment module, and show how they integrate via the ROS interface with the overall 

software architecture of CORBYS. In this section we will also address some technical issues regarding the 

implemented module. 

1.4 Referenced Documents 

This document references content detailed in other documents. The following documents give additional 

perspective for the present work: 

 D2.1  Requirements and Specification: State-of-the-Art, Prioritised End-User Requirements, 

Ethical Aspects 

 D2.2 Detailed Specification of the System. 

 D3.2 Physical/Physiological sensing devices 

 Christoph Salge, Cornelius Glackin and Daniel Polani, 2012, Approximation of Empowerment in 

the Continuous Domain, Advances in Complex Systems (ACS) 

The last document is an external publication which has large overlap with the content provided in section 2 

and 3, but section 3 also contains additional development in the empowerment formalism, since its 

publication. The external publication on the other hand contains some additional examples and graphs that 

might be illustrative for a more in-depth look at empowerment. We have included this publication as part of 

this deliverable.   
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2. Empowerment 

As the core functionality of this deliverable is the empowerment concept, this section will give both a 

general introduction to the idea of empowerment and outline how empowerment can be used for a variety 

of different tasks in the cognitive framework of CORBYS in particular, and for other robotic settings in 

general.   

2.1 General Introduction to Empowerment 

Empowerment defines a goal-independent, state-based utility function. It provides one answer to the 

question "What states should an agent prefer if it currently has not specific goal?" In this it embodies one of 

the salient methods the current state-of the-art in the research efforts towards improved cognitive robotics 

based on “self-motivated behaviour generation”, “taskless utilities”  and “artificial curiosity”, and with this, 

it complements more traditional machine learning and AI techniques that are typically more concerned with 

questions such as: “How does an agent attain a specific predefined goal?” 

The basic motivation behind the empowerment concept is that it is preferable to be in a state where the 

agent's actions have the greatest influence on the world, as perceived by the agent. This can be decomposed 

by looking at what kind of states is less desirable according to empowerment. Everything else being equal, 

a state of the world that has the following properties would have lower empowerment which would indicate 

that it should be avoided: 

 A state where all action of an agent lead to the same outcomes. This means that, no matter what the 

agent does, the result is always the same, and the agent is basically ineffectual.  

 A state where some or all actions of the agent lead to a highly random outcome. This would make 

the results of an agent's action unpredictable, and, similar to the first case, indicate a lack of control 

over the world by the agent.  

 A state where the agent has only a very limited number of choices. This also indicates that the agent 

has less influence on the world, compared to a state where there are more choices of similar quality.  

 A state where the changes in the world brought on by the agent's actions, but which cannot be 

perceived by the agent. This poses two problems: 1.) from the agent’s perspective this state cannot 

be distinguished from a state where it does not influence the world. 2.) If we assume (e.g. in an 

evolutionary context or the context of a design decision) that an agent would be equipped with 

sensors to sense specifically that part of the world which matters to it, then an undetected change 

caused by the agent's actions must be deemed irrelevant to the agent.    

From an empowerment perspective, the ideal state to be in is one that offers a high number of choices that 

all lead to different, predictable outcomes that can be perceived (and distinguished) by the agent.  

The next section, which also contains a formal, mathematical definition of empowerment, demonstrates that 

these properties can be formalized as the Shannon channel capacity between an agent's actuators at one time 

(or a sequence of times) and an agent's sensors at a later time. This leads to a well-defined value for every 

state the agent can be in, and it can be computed given the following information: 

 The possible states / values of the actuator 
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 The possible states / values of the sensor input 

 The conditional probabilities of the sensor input given the actuator values 

Importantly, there is no need to have an interpretation of what any of those sensor values or actuator inputs 

mean; in particular, it is not necessary to assign any kind of semantic properties to them, or embed any such 

semantic properties in the algorithm. This makes the empowerment formalism applicable to a very generic 

agent definition, as long as there is a good model of the agent’s interaction with the world.  

It follows that the two main challenges for this approach are the computation and acquisition of a world 

model. Since there is often no complete understanding of the dynamics between the actuators and the 

sensors, it becomes necessary to approximate this relationship. This brings in our requirement for a model 

learner that can extract these dynamics, ideally giving us a conditional probability distribution. The other 

main problem is the computation time. Prior to the CORBYS project the state of the art was that 

empowerment calculations were very time consuming; even for simple problems such as the simple 

pendulum, they took hours to compute.  

Due to the limitations in computational power and knowledge about the world, it became evidently 

necessary to develop some form of empowerment approximation that could deal with these shortcomings. 

These will be outlined in the next section. Following directly now is a conceptual overview of what an 

idealized version of empowerment could do in general, and what it is supposed to do in the CORBYS 

project. 

Much conceptual work of the SOIAA cognitive component in this project relies on the central hypothesis 

that living organism try to maximize or at least to maintain their empowerment. The assumption is that 

humans (as well as animals), implicitly aim to avoid being stuck in situations where their actions have no 

influence on the world they perceive; as a special case, previously experienced states with low 

empowerment values are hypothesized to be avoided. We assume that this holds invariably for different 

types of environments, such as discrete worlds (which have been the focus of most published empowerment 

experiments), as well as continuous worlds which are relevant for real-world cognitive tasks such as 

walking or movement in general. This hypothesis is still under investigation, and its evaluation forms a 

central part of UH’s scientific remit in the CORBYS project.  

2.2 Applications of Empowerment 

During our investigations of the properties of empowerment we developed a concept as to how to utilize 

empowerment in several different ways. The specific focus in CORBYS is the applicability for intention 

and goal extraction, but, in view of the goal for the CORBYS architecture to be generic, we also made sure 

to consider applications of this module which would permit more generic uses of empowerment. 

Therefore, the section on applications of empowerment is structured into two parts. First, we will outline 

how empowerment could be generally applied to any kind of robot, to demonstrate the generic nature of 

empowerment. Then we will focus on the specific applications of empowerment in the CORBYS project 

and its two demonstrators.    

2.2.1 Generic Applications of Empowerment 

2.2.1.1 Regularization of the general action domain 

Empowerment can be used to regularize the domain of possible actions prior to the prediction of another 

agent’s intention. Dealing with a high dimensional, continuous domain, such as the trajectory space of 
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walking, the action choices of an agent are, in principle, infinite. But by only considering those trajectories 

that are ridges of high empowerment values in the high-dimensional search space, it is possible to reduce 

the action selection problem to a limited number of choices. Differences in empowerment can be further 

used to obtain a probabilistic prior as to which action trajectories are more likely (when the system is 

guessing intentions) or should be selected with higher probability (when the system is generating 

trajectories itself).  

To illustrate this, consider the following simple example. Imagine an agent standing in a corridor at the 

middle of a T junction, the agent’s actions are continuous, meaning the agent could now move in any 

direction. What are good candidates for possible intentions? If we were to look at a 2-dimensional 

empowerment map of the environment we would notice that being close to a wall reduces the 

empowerment of an agent, since it limits where an agent can go in a given time frame. This typically leads 

to a ridge of high empowerment along the middle of each of the three corridors. Those would meet in the 

middle of the T junction. If the agent would not stand in the T junction, empowerment regularization would 

suggest that the agent is likely to move down along the middle of one of the three corridors, which, without 

further insight into possible agent intentions, seems a reasonable default assumption. Of course, it might  

still be possible that the agent aims to do something different, like colliding with a wall at a particular 

location, but this is a very specific intention for which no uninformed prior can make a plausible guess 

ahead of time. In such a special case, empowerment, just like any other algorithm, is bound to fail. If an 

agent decides to act in a truly random or structureless way that does not relate to features of the 

environment, there is little chance to predict its actions or guess its intentions. 

The purpose of this simple example is to provide a so-called Gedanken experiment that demonstrates how 

ridges of high empowerment can appear in the environment for specific distinguished paths. This is true in 

the 2-dimensional locational space of a hallway, but also, similarly, such ridges will appear in the 

multidimensional space which is spanned by all joint angles and velocities of a human walker, as will be 

the case with CORBYS demonstrator I. This can be extended to any state space, in which preferred 

trajectories are distinguished purely based on their empowerment, which in turn is a property of the 

state/action space structure only, and of no other externally defined utility or reward. 

2.2.1.2  Empowerment preservation of robot system 

In particular, empowerment offers a heuristic to generate a utility of different world states without having to 

specify particular goals of the system. Determining the empowerment for the robotic system acts as a 

helpful aid for action selection of the robot, especially one operating separately from the human, such as the 

CORBYS demonstrator II, who is to accompany a human in difficult terrain. The robot there generally has 

the aim to maintain a certain proximity to the human, but there might be several ways to achieve this 

desired proximity. In this case choosing the most empowered route could be helpful to keep the robots 

actions open, and avoid getting into scenarios where the robot would become stuck. Assuming that the 

model of the environment is good enough, any situation that would leave the robot ineffectual or stuck 

could then be avoided. Also, if the human is not moving, the robot does not have a concrete goal. If the 

desired distance is achieved the robot could just remain immobile. But here, again, empowerment could 

also offer an additional sub-goal by motivating the robot to move to a more empowered position. This could 

be helpful, as it would give the robot more potential influence on the world, and would make it potentially 

easier for the robot to follow the human afterwards, or perform an appropriate required task. Please note 

that there is a second goal for demonstrator II which involved detecting the human’s intentions, for example 

whether the human wants to approach the robot to place a collected sample on the robot’s back. This 

additional goal since it involves intention extraction will be tackled in future deliverable 5.2. 
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For demonstrator I Empowerment preservation is less relevant, as the robotic system is more constrained, 

and not as likely to enter a path that will lead it to a situation where it is stuck. Nevertheless, empowerment 

preservation might still be a good proxy to discourage the robot control to end up in a singularity, or to keep 

the robot from falling over. The last one is, in the case of demonstrator I, more of a theoretical application, 

as there are other safeguards in place to keep this from happening.  

Looking beyond the two demonstrators of the CORBYS project, this preservation of empowerment offers 

to add a helpful methodological tool for any kind of cognitive robotic system control because it offers a 

generic measure that, if maximized, causes the robot to take actions that preserve or enhance it functionality. 

Getting stuck or becoming non-operational in any other way would result in a drop in empowerment and 

empowerment will therefore drive a system as to avoid such states.      

2.2.1.3 Reduction of unwanted Robot - Human Interference 

Another important property of empowerment is that it is sensitive to noise. In other words, empowerment is 

likely to drop if some random external process influences the sensors of the agent, or the world perceived 

by the agent’s sensors, respectively. Now, the level of noise might differ from state to state in the world, 

and higher levels of noise in a state will generally reduce empowerment and induce an agent to avoid high-

noise states.  

As an important special case of that one can consider two agents which share an environment. If they act on 

the same objects/aspects in the world, they might interfere with each other. If now an agent is unable to 

predict what another agent is going to do, that other agent becomes a source of noise for the first agent, and 

thus avoiding said agent so as to minimize interaction would be beneficial for the agents’ empowerment 

(Capdepuy, Polani, & Nehaniv, 2007).  

In a concrete example, this might be a helpful “intrinsic motivation” model for a robotic system to avoid 

collisions with humans or other independent robots. If a robot operates somewhat close to a human, such as 

the demonstrator II, then the proximity of this human would introduce a source of noise in the agent’s 

environment. If the robot would be so close as to cause potential for a collision in the foreseeable future, 

then this collision would introduce a random factor in the agent's resulting state which would be hard to 

predict. Therefore, in order to avoid collision, empowerment maximization will create an incentive for an 

agent to maintain a position in which any possible action of the human would not result in a collision (for a 

specific timeframe of the future) 

In general, there are other human-robot interaction scenarios where such behaviour would be beneficial. 

Empowerment would still allow the robot to interact with the human if the robot has a clear idea (i.e. a good 

prediction model) of what the human wants to do, but would try to minimize its interaction and interference 

with the human if it is unclear what the human wants to do. This should, as a bottom line, at least keep the 

robot out of the human’s way.  

For demonstrator I this functionality is less applicable, as it is our stated goal to actually interact, or rather 

interfere with how the human is moving. But then empowerment preservation or the maximisation of 

empowerment for the robot is not the main concern in the second demonstrator scenario. Here we are 

instead aiming to maximise the empowerment of the human agent interacting with the robot. Looking at the 

first demonstrators from the human perspective, then the reduction of human-robot interference again 

becomes a helpful metric, as it should be in the human interest to act such that the robot interferes as little 

as possible, meaning the human should strive to achieve the therapeutically good movement trajectories, 

which should reduce the amount of interference from the robot, and thereby increase the human agent’s 

empowerment.  
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2.2.1.4 Evaluation of the Human Situation 

If the robotic system has not only access to its own sensors and actuators, but also has good information 

about the states of the humans actuators and sensors (or at least to a relevant subset), then it should also be 

possible for the Empowerment Module to calculate the empowerment of the human. This should, in general, 

allow the robotic partner in a human-robot interaction to evaluate if the human is stuck, or somehow limited 

in its actions. The robot could then either assist, or signal for help, depending on the specific scenario.  

This is particularly relevant for CORBYS demonstrator I, as the high amount of sensors and physical 

closeness between the robot and the human, allows for a good estimation of the human agent’s 

empowerment. This would also allow us to study the development of human’s empowerment over time, 

which could then be related to therapeutic progress or specific situation for the human that the demonstrator 

I should be aware of. (such as exhaustion, loss of stability, etc.) 

2.2.2 Specific Empowerment Applications within CORBYS 

 

Fig. 2 The USE-CASE diagram for the SOIAA Module, split up by CORBYS demonstrators. 
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The previous examples applications outlined how the generic use of empowerment in a not a priori 

specialized cognitive robotic system could look like. Focusing now on the two CORBYS demonstrators, 

there are several specific applications we will use the empowerment module for. Several of them are 

partially (or fully) driven by an explorative research agenda;  this means that while their function is not 

necessarily essential for the ultimate operation of demonstrator I or II, they address several of the core 

research questions which lie at the heart of the goal of CORBYS to develop a generic cognitive robotic 

framework.  

Looking at the USE-CASE diagram in Fig.2 we can see that there are basically three use cases for the 

SOIAA module across the different demonstrators. Furthermore, Fig. 3 shows how different submodules 

are needed for the different use cases. The selection of movement patterns in the first demonstrator relies on 

the “Regularization of Movement Trajectories for Intentionality Extraction”, which aims to provide the 

expected goal extraction. Further development is relying on this functionality to select the projected 

movement.  
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Identification of the use cases for demonstrator I led to the specification of operating modes. The various 

operating modes are briefly summarised as follows: 

 Learning Mode – Treadmill used with CORBYS sensory system for gait analysis. Manual 

correction of gait by therapists. 

 Corrective Mode – Overground walking under therapist supervision, practicing the recorded 

straight-walking in a highly repetitive way. 

 Parameter-Based Adaptation – first extension of the corrective mode, implements cognitive 

interaction between man and machine by detecting semantic intention such as the patient’s wish to 

 

Fig. 3 A diagram of the different sub-modules, colour codes according to the use cases. This deliverable provides the 

Empowerment Calculator and Model Learner sub-modules.  
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start, stop or change speed. 

 Adaptive Walking Mode – further extension of the corrective mode, features complete parameter-

based intra-cycle adaptation. Mode recognises patient’s intended movement trajectories within a 

gait cycle, and applies corrective force accordingly. This mode allows the patient to move freely 

around the rehabilitation area, starting, stopping, changing speed and direction at will. 

More detailed explanation of the modes can be found in deliverable 2.2. 

SOIAA’s role and specifically the roles of the Model Learner and Empowerment Calculator modules 

respectively change within the various operating modes of demonstrator I. For clarification Table 1 outlines 

the role of the Model Learner and Empowerment Calculator modules during each of these modes. 

Table 1 SOIAA's role within the operating modes of demonstrator I 

Learning Mode Corrective Mode Parameter-Based 

Adaptation 

Adaptive Walking Mode 

SOIAA is solely gathering 

data. 

SOIAA relays therapists 

recorded gait trajectories to 

low-level control. 

SOIAA relays therapist’s 

recorded gait trajectories to 

low-level control.  

Additional Sensor Input is 

utilized by Cognitive 

Partners to select from a set 

of gait trajectories, reacting 

to patient’s intention. 

SOIAA generates walking 

trajectories based on the 

current state of the system, 

as indicated by the 

available sensors.   

Model Learner active, 

recording and learning 

from kinematics, forces, 

hip and knee resistance, 

and actuation. 

Model Learner active, 

performing state prediction 

for Empowerment 

Calculator. 

Model Learner active, 

performing state prediction 

for Empowerment 

Calculator. 

Model Learner active, 

performing state prediction 

for Empowerment 

Calculator. 

Empowerment Calculator 

inactive. 

Empowerment Calculator 

passive, will perform a 

decision support role, 

analysing gait and 

providing feedback to the 

therapist through the 

CORBYS GUI but not 

actively modifying 

trajectories. 

Empowerment Calculator 

passive, will perform a 

decision support role, 

analysing gait and 

providing feedback to the 

therapist through the 

CORBYS GUI but not 

actively modifying 

trajectories. 

Empowerment calculator 

active, augmenting 

therapists recorded gait 

with change of speed, 

turning, and starting and 

stopping trajectories. 

 

We expect that the therapeutic decision making support in demonstrator I, as outlined by Table I, will rely 

mostly on the information flow measure to be developed in deliverable 5.3.  But empowerment might be 

able to provide additional support for this functionality. Furthermore, empowerment should also provide a 

criterion for the quality of intentionality prediction (and, by that, allow one to test the original hypothesis 

about empowerment as a plausible behaviour indicator).  
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The second demonstrator encapsulates several internal functions in one external use case, namely the 

selection of movement patterns. Object and people avoidance provide crucial elements for this functionality.  

2.2.3 Regularization of Movement Trajectories for Intentionality Extraction 

Specifically in the first demonstrator we are interested in using empowerment to regularize the high-

dimensional continuous space of the shared patient-orthosis world state (as outlined in 2.2.1.1). We expect 

that this will both generate a limited number of distinct candidates for the human's movement trajectories, 

and ideally also provide us with an initial prior for a subsequent intention extraction. This relies centrally on 

our hypothesis that human gait follows a path of high empowerment which will therefore also be tested by 

this study. As a result, the first step towards this application will therefore be an evaluation of the 

empowerment of a healthy gait trajectory, collected from a healthy subject, aimed to be a baseline for 

evaluating the Empowerment Calculator, with the finalized and integrated prototype.  

2.2.4 Therapeutic Decision Making Support 

Since we will have all the necessary sensor data to measure the empowerment of the patient without 

actually interfering with the therapeutic regime (see Table 1), it would also be possible to determine a 

patient’s empowerment, or average empowerment over the course of both a single session, and along the 

full duration of the therapeutic treatment. We will study the development of the patient’s empowerment 

over time as a possible criterion to provide the therapist with additional information regarding the patient’s 

progress. This information can be provided to the therapist as a decision support indicator via the CORBYS 

GUI. 

2.2.5 Obstacle Avoidance 

Since the second demonstrator has to navigate a potentially difficult environment, empowerment would be 

useful to be able to avoid obstacles. In general, immovable obstacles, such as static objects, restrict an 

agent’s movement capabilities, and thereby also lower an agent's empowerment. Therefore in the context of 

demonstrator II, the robot’s understanding of the environment and the obstacles within it can be used as 

input to the empowerment module. In turn the empowerment module will then determine suitable 

trajectories based on this understanding. It should be noted that the FPGA reflexive layer will also be in this 

operating loop, issuing stop/go commands based on laser scanner data. We will therefore investigate 

obstacle-avoidance based on the integration of the generic empowerment module into the decision making 

of the agent's navigation. 

2.2.6 People Avoidance 

As outlined before, humans are difficult to predict, and therefore typically introduce a certain amount of 

noise into the environment. We intend to use this to avoid too close proximity to the human, specifically in 

the case of demonstrator 2, when the human is moving in a way that is not predictable to the robot. On the 

other hand, if the robot has a good model to successfully predict that the human wants to interact with the 

robot (for example, the human might want to take something out of the robots transport compartment), then, 

based on the empowerment criterion, the robot should still be able to interact with the human. 
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3. Empowerment Formalism 

Empowerment is formalized using terms from information theory, first introduced by Shannon (Shannon, 

1948). For self-containedness, we introduce the relevant information-theoretic notions. The basic 

information-theoretic quantity in this context is entropy, which is a measure of uncertainty. Entropy is 

defined as 

1  ( )   ∑  ( )    ( )    (1)  

where X is a discrete random variable with values    , and  ( ) is the probability mass function such that 

 ( )          , the probability that the random variable X assumes the value x. Base 2 logarithms are 

used by convention, and therefore the resulting units are expressed in bits. Introducing another random 

variable Y, jointly distributed with X, enables the definition of the conditional entropy. 

2  ( | )   ∑  ( )∑  ( | )    ( | )       (2)  

This measures the remaining uncertainty about X if Y is known. Since Eq. (1) is the general uncertainty of X, 

and Eq. (2) the remaining uncertainty if Y has been observed, their difference, called mutual information, 

quantifies the information one can gain about X by observing Y, leading to the definition 

  (   )   ( )  ( | ) (3)  

The mutual information is symmetric (Cover & Thomas, 1991) since 

  (   )   ( )  ( | )   ( )  ( | ) (4)  

In the classical communication problem of transmitting a signal over a channel, one considers a sender and 

a receiver. The sender transmits a signal, denoted by the random variable X, and the receiver receives a 

potentially different signal, denoted by the random variable Y. The communication channel defines how the 

transmitted signal is transformed into the received signal. In the case of discrete signals, the channel itself is 

described by the conditional probability distribution . Mutual information (Eq. (3), (4)) may then be 

interpreted as the amount of information, on average, that the received signal contains about the transmitted 

signal. The channel capacity is then defined as the maximum mutual information for the channel over all 

possible distributions  of the sender signal. 

       ( ) (   ) 
(5)  

Hence the channel capacity is defined as the maximum amount of mutual information the received signal Y 

can possibly contain about the transmitted signal X. Mutual information is calculated using  ( ) and 

 ( | ), but channel capacity depends on  ( | ) alone, as  ( ) is determined by the maximization criterion 

(Eq. (5)).  

Armed with these definitions, we can now define empowerment. Empowerment is an information theoretic 

measure of general utility. To formalize this, we consider the perception-action loop (Klyubin, Polani, & 

Nehaniv, 2005a) as a type of channel. More precisely, we consider an agent as consisting of sensors (St), 

actuators (At) and rest of system (Rt) at time t. These components and the dependencies between them 

evolve through time and can be illustrated with the Bayesian network in Fig. 4. 
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Fig. 4 The perception-action-loop visualised as a Bayesian network. S is the sensor, A is the actuator, and R represents 

the rest of the system. 

Rt is included to formally account for the effects of the actuation on the future sensoric input via the 

environment. In terms of the classical communication problem, Rt is the state of the actuation channel.  

Empowerment is defined for any stochastic dynamical system where transitions arise as the result of a 

control action, e.g. such as an agent interacting in an environment. In the following, a vector-valued state 

space      and a discrete action space            are assumed. Empowerment is thus defined as 

the channel capacity of the agent's actuation channel terminating at a sensor at later time
a
 (Klyubin, Polani, 

& Nehaniv, 2005b). 

      ( (    |     ))( (    |     ))     (  ) (       |  ) 
(6)  

Empowerment is measured in bits. Empowerment has a number of interpretations: one can consider it as 

the number of action options with distinguishable outcomes available to an agent (Klyubin, Polani, & 

Nehaniv, 2005a). An agent attempting to maximize empowerment as it moves aims to maximize its 

available options at any time. Another interpretation is that of an information-theoretic analogue of the 

concept of combined “controllability/observability” known from control theory. Empowerment measures 

the amount of (Shannon) information an agent can potentially “inject” into the environment via its actions 

and recapture later. It is important to note that empowerment only identifies potential information injection, 

not what the agent actually ends up doing. In particular, the maximizing action distribution  (  ) is not 

determining what the agent will actually do, rather it identifies the saliency of the options available to it.  

In the present exposition, we consider the world state and the sensor state    and    to be the same. This 

makes it possible to define empowerment purely in terms of state transitions, i.e. in terms of states  and 

their successors  and actions (or, equivalently, if multiple actions are considered, action sequences) . 

Hence, using Eqs. (3) and (5), the empowerment  ( ) of a particular state   may be defined as the Shannon 

channel capacity (Eq. (5)) between  , the action selection, and   , the resulting successor state. By making 

substitutions for entropy and conditional entropy in terms of actions, states, and successor states into Eq. (5), 

it can be shown that empowerment can be written as
b
: 

 
 ( )      

 (  )
∑  (  )

  

   

∫  (  |    )    ( 
 |    )

 

    (7)  

                                                      
a
 To simplify the discussion, all agents here are considered to have perfect knowledge of the environment i.e. their 

decision-making process is not limited by the efficiency (or lack of) their sensors. Hence throughout this report 

sensors and state are considered synonymous, however in the wider context of empowerment there will, in general, be 

a distinction (for details, see e.g. (Klyubin, Polani, & Nehaniv, 2008).(Klyubin, Polani, & Nehaniv, 2008). 
b  For notational convenience, instead of writing  (    |     

 ) we will now just write  (  |   ) to denote the 

transition from state   to state    under action sequence  . We will also use the parameter   to loop over the actions of 

 . 
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For further details on the derivation and notation of Equation (7), refer to (Jung, Polani, & Stone, 2011). In 

this way, the perception-action loop formalism is treated as a reinterpretation of the classical 

communication problem. With the perception-action-loop a discrete memoryless communication channel 

there exist algorithms to calculate the channel capacity, for example by the iterative algorithm Blahut-

Arimoto (Blahut, 1972). 

3.1 Discrete State Spaces 

The Blahut-Arimoto algorithm (BA)  (Blahut, 1972) is an expectation maximization (EM) type algorithm 

for computing the channel capacity given by Equation (7). In the case of empowerment, BA iterates over 

the action distributions   ( ), where  is the iteration parameter, to produce the distribution that 

maximises Equation (7). Since a discrete action space is assumed,   ( ) can be represented by a vector 

  ( ) (  
      

  ). We follow the general notation from (Jung, 2011), and define the variable      as: 

 
      ∫  ( 

 |    ) 
   [

 (  |    )

∑  (  |    )  
   

   

]   .. 
(8)  

BA begins with initialising   ( ) e.g. to be uniformly distributed, by simply setting   
     ⁄  for all 

actions           (action sequences for multiple step empowerment). At each iteration     , the 

probability distribution for   ( ) is obtained from   - ( ) using 

   
     

      
    (      )  

(9)  

where   
   is a normalisation parameter ensuring the probabilities sum to one for all actions         , 

given by 

     ∑     
    (      )

  
     (10)  

Thus   ( ) is calculated for iteration step  , it can be used to obtain an estimate   ( ) for the 

empowerment  ( ) using 

   ( ) ∑   
       

  
    (11)  

The algorithm can be iterated over a fixed number of iterations or until the absolute difference |  ( ) 

    ( )| drops below an arbitrarily chosen threshold  . 

The main issue with using BA for continuous space empowerment is the evaluation of the high-dimensional 

integral in     . The next section outlines two different Monte-Carlo (MC) based approaches for addressing 

this issue. 

3.2 Continuous State Spaces 

To calculate empowerment from Eq. (7) in the continuous domain, we can employ different methods. First 

this section will outline how empowerment may be calculated by discretizing the continuous domain using 

binning. Secondly, an approach that assumes that  (  |    )  may be approximated by a multivariate 

Gaussian distribution is presented. 

3.2.1 Monte-Carlo Binning Approach 
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Binning is a useful technique for approximating the continuous state space as it does not rely on making 

assumptions about the underlying distributions. Care should be taken with any binning approach to ensure 

that where possible each bin contains approximately the same number of samples to ensure no bias is 

inadvertently applied (Olsson, Nehaniv, & Polani, 2005). Binning results in replacing the conditional 

probability densities  (  |    ) by probability estimates  ( ̃ |    ). Once the continuous data has been 

binned, the BA algorithm can be applied to the resulting conditional distribution, substituting the high-

dimensional integral in Eq. (8) with a summation over all bins. 

3.2.2 Monte-Carlo Multivariate Gaussian Approach 

The Monte Carlo binning approach has several drawbacks, one being that the binning can introduce 

artefacts stemming from the arbitrary way in which bins are allocated. However, the main drawback is that 

it requires many bins to be used to get an accurate representation of empowerment. This requirement of 

many bins places a significant additional computational load on an already computationally costly 

methodology. For this reason, in (Jung, Polani, & Stone, 2011), a Monte Carlo Multivariate Gaussian 

Approach was used. To introduce it we essentially follow the exposition from (Jung, Polani, & Stone, 2011). 

In this approach, the assumption that  (  |    ) is a multivariate Gaussian, or can be reasonably well-

approximated by it, is made, i.e. 

   |      (     ) 
(12)  

where    (           )
 

 is the mean of the Gaussian and the covariance matrix is given by     

    (    
        

 ). The mean and covariance will depend upon the action    and the state  . Samples from 

the distribution will be denoted  ̃ and can be generated using standard algorithms. 

The following algorithm summarizes how to compute the empowerment  ( ) given a state     and 

transition model  (  |    ): 

1. Input: 

(a) Specify state   whose empowerment is to be calculated. 

(b) For every action          define a (Gaussian) state transition model  (  |    ), which 

is fully specified by its mean    and covariance   . 

 

2. Initialize: 

(a)   (  )     ⁄  for         . 

(b) Draw     samples  ̃   
  each, according to distribution density  (  |    )  (     ) for 

        . 

(c) Evaluate  ( ̃   
 |    ) for all         ;         ; and sample          . 

 

3. Iterate the following variables for         until |       |   or the maximum number of 

iterations is reached: 

(a)               

(b) For          

(i)         
 

   
∑    [

 ( ̃   
 |    )

∑  ( ̃   
 |    )    (  )

   
   

]
   
    

(ii)                (  )        

(iii)         (  )      (  )    (      ) 
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(iv)          (  ) 

(c) For          

(i)   (  )    (  )   
   

 

4. Output: 

(a) Empowerment  ( )      (estimated). 

(b) Distribution  ( ) achieving maximum mutual information. 

 

3.3 Faster Computation 

In this section we introduce a faster method to compute empowerment for a continuous, but locally linear 

domain (Salge, Glackin, & Polani, 2013). We will show how the more general problem of computing 

channel capacity in the continuous domain, given some specific assumptions, can be reduced to parallel 

Gaussian channels, where channel capacity can be determined with well-established algorithms. 

Let  be a multi-dimensional, continuous random variable defined over the vector space   . Let   be a 

multidimensional random variable defined over   . We will call   the action variable, and   the 

perception variable, and we assume that there is a linear transformation         that defines the 

relation of the variables as: 

         (13)  

   is another multi-dimensional, continuous random variable defined over the vector space   , modelling 

the noise in the system. We assume that   is independent of   and  . We further assume that each 

dimension     of   is independent of each other dimension, and has a normal distribution with 

    (    ) for each dimension. A possible interpretation for this noise, if we are dealing with a real-

world agent, would be the measurement inaccuracy introduced by the agent’s sensors. 

What we want to calculate again is the channel capacity: 

       ( )  (  )   (   ) (14)  

The power constraint   is introduced to limit the values that   can assume, otherwise the channel capacity 

could be made arbitrarily large by allowing sufficiently large action amplitudes to render all outcomes 

distinguishable. The power constraint can model a “physical” power constraint as a conceptual limitation of 

action amplitudes (i.e. deviations from the “neutral” action). Generally, however, we will not assume a 

necessarily physical interpretation of power, but rather a conceptual one.  

3.3.1 MIMO channel capacity 

If we assume, in addition to our assumption of independent noise, that the variance of the noise in each 

dimension is 1, then the problem is similar to computing the channel capacity for a linear, multiple input, 

multiple output channel (MIMO) with additive Gaussian noise. 

This can be solved by standard methods (Telatar, 1999), namely by applying a Singular Value 

Decomposition (SVD) to the transformation matrix    , that decomposes     as 



D5.1 Self-motivated gait and goal generation 

24 

 

        (15)  

where   and   are unitary matrices and   is a diagonal matrix with non-negative real values on the 

diagonal. This allows us to transform Eq. (13) to: 

             .. (16)  

Each dimension of the resulting variables     ,        and      can be treated like an independent channel 

(see (Telatar, 1999)), reducing this to computing the channel capacity for linear, parallel channels with 

added Gaussian noise, as in (Cover & Thomas, 1991). 

 
        ∑

 

 
   (  

    

 [(   ) 
 ]
)       ∑

 

 
   (      ) , 

(17)  

where    are the singular values of    , and    is average power used in the ith channel, following the 

constraint that 

 ∑     .. (18)  

Since the channel capacity achieving distribution is a Gaussian distribution, this means the optimal input 

distribution is a Gaussian with a variance of    for each channel. We can simplify Eq. (17) because the 

expected value for the noise is 1, and the unitary matrix applied to    does not scale, but only rotates the 

input, so it retains its original variance of 1.  

The optimal power distribution that maximizes Eq. (17) can then be found with the waterfilling algorithm 

(Cover & Thomas, 1991).  

3.3.2 Transformation of Noise 

If we assume that the noise     (    ) is Gaussian and independent in each dimension, but with different 

variances    for each channel, we cannot easily remove the noise from the Eq. (17) after the transformation 

with   . Rotating the noise would introduce covariances between different noise distributions for each 

channel. 

If we want to make sure that the noise distributions are still independent after being transformed we could 

assure that they are spherical (having the same variance in each channel) before they are transformed. 

Assuming independent, but non-spherical distributions 

     (    ) 
(19)  

we now define a diagonal matrix   as: 

 

   (
    
   
    

)         
 

√  
. 

(20)  

If all the values for  are positive, non-zero values then  is a non-singular diagonal matrix, with positive, 

non-zero diagonal values. Scaling a continuous random variable with a scalar  changes the entropy 

contained in that variable to   (  )  ( )    ( ). Mutual information remains unaffected, so if we 
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multiply    , the random variable that results from our actions with the scaling matrix, it would do nothing 

to    's informational content about    . Thus it follows that: 

  (   )  (    )  (        ) (21)  

By replacing  , the transformation from   to  , with    we create a channel capacity problem with the 

same channel capacity, but with spherical, independent noise. It can then be solved with the algorithm 

outlined in the last section which relies on independent noise. 

The contribution of the different noise levels to the channel capacity are not lost, but merely implicit in the 

matrix   . Realizing this also makes it easier to compute the original solution, because we do not have to 

keep track of the different noise levels in  [(   ) 
 ], since the resulting channel capacity is now only 

dependent on the singular values of   . 

3.3.3 Noise with zero Variance 

Some discussion concerning the treatment of noise is in place. We remind the reader that in the simplest 

case of a non-degenerate deterministic continuous scenario, i.e. a scenario without noise, and where the 

results of different actions (or action sequences) do not overlap with each other, different action sequences 

will in general lead to different states, thus empowerment will be maximal and equal to    | | (with | | the 

number of action sequences). 

Since in the present Gaussian model the action space is continuous, there are infinitely many action 

sequences. The ensuing empowerment value would thus be infinite, unless the noiseless degrees of freedom 

are not affected by the actions. 

Only the presence of noise therefore introduces an “overlap” of outcome states that allows one to obtain 

meaningful empowerment values. However, this is not a significant limitation in practice, as virtually all 

applications need to take into account actuator, system and/or sensor noise. 

We now generally assume that parallel noise on the output channel is transformed away by the procedure 

outlined in Sec. 3.3.2. Therefore in our examples, unless otherwise noted, we assume that the variance of 

the noise is one, and the mean of the noise is zero. This is without loss of generality; any nonzero mean 

could be immediately transformed away since any affine transformation in the system does not change the 

mutual information. 

3.4 Gaussian Process 

The various empowerment methodologies thus far presented, whether in the discrete or continuous domain, 

using Monte Carlo Multivariate Gaussian or the Gaussian channel approximation, have inherent in their 

computation the necessity of being able to evaluate successor states for possible actions. However, if the 

dynamics of the state space are unknown, then the agent needs to have some form of model learning to be 

in place in order to estimate the state transition probabilities from state-action-successor state triplets (Jung, 

2011). This is why a Model Learner sub-module was specified in D2.2. The Model Learner sub-module of 

SOIAA will enable the Empowerment sub-module to evaluate possible actions based on the possible 

successor states the Model Learner determines. 

In an environment where transition probabilities are not available, the Model Learner sub-module will have 

the task of monitoring the system and gathering triplets of state, performed action, and resulting successor 

state. This monitoring of the system in demonstrator I, will be performed in the first mode of operation, 
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appropriately named Learning Mode. (please see deliverable D2.2) In this mode SOIAA will be passive, 

specifically the Model Learner sub-module will be recording sensory data measuring kinematics, forces and 

resistance in hip and knee, as well as the data from the human sensory system (patient’s wearable sensors). 

The Model Learner sub-module will perform regression on this data, in order to infer a one-step transition 

model for use by the Empowerment sub-module in the Adaptive Walking mode. From this one-step 

transition model, a more general n-step transition model will be determined by iteratively predicting n-steps 

ahead in time. 

In general, there are many ways that the task of regression could be performed. In the Model Learner sub-

module it has been decided to use Gaussian Process regression (GP) (Rasmussen & Williams, 2006). GPs 

are simple and mathematically elegant, yet powerful tools that offer considerable advantages. In essence, 

GPs generate a predictive distribution which is exactly what is needed for the computation of empowerment. 

Additionally, GPs are non-parametric, meaning that a GP is not restricted to a certain class of functions, but 

instead by employing the kernel-trick can encompass all functions sharing the same degree of smoothness. 

Finally, the Bayesian framework addresses the problem of hyperparameter selection in the GP in a 

principled way, which makes the process of using GPs in the Model Learner sub-module fully automated. 

3.4.1 Learning System Dynamics 

To learn the state transition probabilities   (  |     ), i.e. predict the successor state    when performing 

one-step action       in state    , multiple univariate GPs are combined as illustrated by Fig. 5. Each 

individual      , where           and          , predicts the -th coordinate of successor state    

under action      . Each individual       is trained independently on the subset of transitions where action 

    was chosen. The desired target outputs to be regressed represent the change in the state variables 

(    -  ). In this way, actions and state variables are treated separately, hence a total of       univariate 

GPs are required. For a detailed description of how univariate regression works refer to (Rasmussen & 

Williams, 2006). 

Training       enables us to determine the distribution   (  
 |     )  (   ( )    

 ( )) for the -th 

variables of the successor state. The exact equations for the mean and variance functions of multivariate 

Gaussians are well-known and can be found in (Rasmussen & Williams, 2006). Every       will have its 

own set of hyperparameters     , and are independently obtained from the associated training data via 

Bayesian hyperparameter selection. The hyperparameters are associated with the particular type of kernel 

that is being employed. The kernel used in this work is the automatic relevance determination (ARD) kernel 

(Mackay, 1994) (Neal, 1996). This kernel is a modified squared-exponential (radial basis) kernel that was 

chosen for its wide applicability, ease of use, and the interpretability of its hyperparameters. 

Hyperparameter selection in the Gaussian Process regression learner used in the Model Learner sub-module 

will be performed using Bayesian hyperparameter selection. Combining the predictive models for all  

variables, we obtain the desired distribution: 

   (  |     )  (  ( )   ( )). 
(22)  

Hence making a one-step transition from     under action      , where   ( ) (   ( )      ( ))
 
, and 

  ( )     (   
 ( )      

 ( )), as shown in Fig. 5. 
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Fig. 5 Learning state transition probabilities   (  |     ) by combining multiple univariate GPs. 

3.5 Determining Empowerment of a Process 

This section outlines how to compute the Empowerment of a process, if the GP for this process is known. 

Empowerment can be calculated directly from the covariance matrix of the GP. 

3.5.1 Additional Restrictions 

First, we introduce some preliminary restrictions. 

a) The mean function   ( ) is assumed to be zero. Since the informational quantities of the 

distributions are not affected by shifting the mean this should be unproblematic. 

b) We assume that the random variables can now be drawn from two support sets,     and     , where 

the first is associated with the actions of an agent and the second is associated with the sensors of 

the agent. We still assume that any finite selection of those two sets will result in an appropriate 

covariance matrix. 

c) We assume that the set of all variables based on     and the set of all variables based on     form a 

causal pair. This means that all causal routes between those variables that can explain the 

covariance between   and   are from   to  , and that we can exclude any common cause 

explanation, and any influence of   on  . This will allow us to assume that we can intervene in   

and not change the covariance matrix. 

 

3.5.2 Reduction to MIMO Channel with Coloured Noise 

First, we reduce the problem of calculating the channel capacity for the GP to calculating the channel 

capacity for a continuous, multiple input, multiple output channel with coloured Gaussian noise. 
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First we chose    actuator variables            , and we also chose     sensor variables           . 

Based on the covariance function   (   ) we can now determine a covariance matrix     for this specific 

process, 

 
  

[
 
 
 
 
 
 
 (     )     (      )      (     )   (     )

                                                                  

 (      )   (       )  (      )   (      )

 (     )      (      )  (     )          (     )

                                                                 

 (      )   (       )  (      )   (      )]
 
 
 
 
 
 

 [
        
        

]  (23)  

Now, if the variable               assumes a concrete value              , then this results in a 

specific, multivariate Gaussian distribution for             , with 

     (     ).. 
(24)  

Specifically,    can be computed as: 

         (        
      ).. 

(25)  

Assuming that the mean of the original GP is zero we can also determine the mean vector for the variables 

based on    as 

            
    (26)  

Looking at Eq. (25) we see that the covariance only depends on the original covariance matrix, and not on 

the actual value of  . Also, from Eq. (26) we see that the new mean of the distributions basically is a linear 

transformation of   , with the matrix         
    . So, if we were to vary the values for s this would 

affect the mean of the resulting distribution, but not the remaining uncertainty or covariance. 

As a result the relationship between    and    can be expressed as a linear, multiple input, multiple output 

channel with added coloured noise as 

         (27)  

with    (    ). 

3.5.3 Reduction to MIMO Channel with Isotropic Noise 

In this section we will now reduce this formulation to the MIMO channel with isotropic noise, which has 

been solved already in our previous paper. For this we need to remind ourselves that rotation, translation 

and scaling operators do not affect the mutual information  (     ). 

The noise   where    (    ) can be expressed as: 

          (28)  

Where    (   ) is isotropic noise with a variance of 1, and         is the singular value 

decomposition of   . U and T are orthogonal matrices, and   contains the singular values. Note that all 

singular values have to be larger than zero, otherwise there would be a channel in the system without noise, 
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which would lead to infinite channel capacity. Therefore, we can define a diagonal matrix    , which 

diagonal entries are the inverse of the singular values in  . This allows us to reformulate: 

                (29)  

                  (30)  

                       (31)  

                       (32)  

                     (33)  

The last step follows from the fact that the rotation of isotropic Gaussian noise is isotropic Gaussian noise. 

This reduces the calculation of channel capacity for the Gaussian Process to the determination of channel 

capacity for the MIMO channel with isotropic noise. We simply define the transformation matrix used as 

           (34)  

To complete the calculation we also have to define a power constraint    [  
 ], and then allocate the 

power according to the different singular values of    via the Waterfilling Algorithm. 
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4. Empowerment and Model Learner Implementation 

4.1 ROS based integration  of CORBYS modules  

SOIAA is one module of the overall CORBYS System (as described in deliverable D2.2). The integration 

between the different CORBYS modules is done through the CORBYS General Purpose Network (GPN). 

The CORBYS GPN is a standard TCP/IP network over Ethernet. To ease the integration of the different 

modules the CORBYS system uses the Robot Operating System (ROS) framework. Details regarding the 

ROS based integration of CORBYS modules will be given in deliverables of WP6 (D6.1, Month30). Here 

an overview is given as needed to understand the preliminary integration of Model Learner and 

Empowerment. The ROS framework runs on top of the operating system and TCP/IP network and provides 

standard ways to describe and publish both services and data in a distributed network.  

ROS (Robot Operating System) provides libraries and tools to help software developers create robot 

applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, 

package management, and more. ROS is licensed under an open source, BSD license. ROS facilitates 

communication between processes running on the same or on different machines. The communication 

between processes can take place either by a blackboard-style paradigm with publishers and subscribers, 

called Topics or in a server-client mode, called Services. A ROS node is a process that performs 

computation and runs in a separate process, using a socket (IP address and port). Nodes are combined 

together into a graph and communicate with one another using streaming topics, remote procedure call 

(RPC) services, and the Parameter Server. These nodes are meant to operate at a fine-grained scale; a robot 

control system will usually comprise many nodes. For example, one node controls a laser range-finder, one 

node controls the robot's wheel motors, one node performs localization, one node performs path planning, 

one node provide a graphical view of the system, and so on. 

The use of nodes in ROS provides several benefits to the overall system. There is additional fault tolerance 

as crashes are isolated to individual nodes. Code complexity is reduced in comparison to monolithic 

systems. Implementation details are also well hidden as the nodes expose a minimal API to the rest of the 

graph and alternate implementations, even in other programming languages, can easily be substituted. The 

ROS nodes of the CORBYS system are all running Ubuntu Linux version 10.04LTS 32-bit and the Electric 

version of ROS. These choices are expected to provide a stable platform for the development and use of the 

CORBYS system. A set of common CORBYS ROS messages and topics have been defined and allow for 

the integration between the HSS Controller (as described in deliverable 3.2)and the CORBYS cognitive 

modules including SOIAA. 

This section further briefly describes the functionality of the executive modules of CORBYS architecture 

(please see deliverable 2.2) which are responsible for translating the cognitive inputs into low-level actions 

and as such are important for explanation of preliminary integration of SOIAA . 

4.1.1 Task Manager (TM) 

The task manager module (TM) will be responsible for setting the working mode of CORBYS modules and 

for smooth transitions between working modes in the CORBYS system. Therefore the TM should be able 

to communicate with all related nodes in the ROS network. 

4.1.2 Functionality Supervisor (FS) 
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In order to ensure a good functionality of the CORBYS system, a functionality supervisor module (FS) is 

required in order to detect unresponsive or faulty modules. This will be achieved by sending some “Heart 

Beat” signals in regular intervals from each ROS node to the FS. As soon as the FS notices abnormal 

behaviour, the TM will be informed and a decision will be taken whether to attempt restarting the node or 

halting the entire system. The mechanism for killing and restarting unresponsive nodes will be investigated 

by partner UB and the necessary framework will be provided if a special node has to run on each machine. 

4.1.3 Real-Time Data Server (RTDS) 

It is well known that the CORBYS Cognitive Control is required to perform well independent of the 

hardware and this fact must be demonstrated using two different systems (CORBYS Demonstrators I+II). 

In order to separate the cognitive modules including SOIAA from the actual hardware, a Real-Time Data 

Server (RTDS) will be implemented by UB to deliver sensor information to the ROS nodes. The actuators 

will be controlled using Real-Time Control (RTC) in Demonstrator Iand a Hardware Server 

(HWS)in .demonstrator II Ideally, the cognitive modules should require very little to no configuration when 

switched from one demonstrator to another. 

4.2 Preliminary  integration of the Model Learner and Empowerment  

Preliminary integration with ROS of the Model Learner and Empowerment sub-modules of SOIAA in 

CORBYS architecture has started. The SOIAA module is essentially a node within the ROS framework. A 

template for the nodes in ROS has been provided by partner UB. The template already contains much of the 

communication functionality SOIAA requires to operate in the ROS framework. This basic functionality 

includes: 

 Sending messages to Functionality Supervisor (FS) at regular time intervals using a single line of 

code 

 Receiving configuration data from the Task Manager (TM) 

 Reading configuration data from the ROS parameter server 

 Receiving sensor data from the desired topics 

Each ROS node will be implemented in C++ using Qt because of the big benefits offered by Qt: 

 Ability to load projects as CMakeLists (used by ROS) 

 Auto completion in the source code editor 

 Simple usage of Threads, which is very important for fast communication 

 Simple connection between different classes (even running in different threads) using signals and 

slots 

 

Figure 6 CORBYS ROS Node Template 

The functionality required for the FS and TM modules, as well as the ROS communication are included in 

the ROS Node Template, as can be seen in Error! Reference source not found.. The node logic part will 

CORBYS ROS Node 

ROS API 

Node Logic FS 

& 
TM 
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implement the functionality of the module and will communicate with the other parts via Qt signals and 

slots. 

The basic functionality of the SOIAA ROS node has been tested. Basic tasks have been performed such as 

the getting and setting of parameters on the parameter server, reading data, and the running of the CORBYS 

GUI. Fig. 6 illustrates how the SOIAA node is connected via the General Purpose Network within ROS. 
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Fig. 7 Placement of SOIAA within the ROS framework. 

At this stage of the CORBYS project, data in the form of ROS bags is beginning to become available. In the 

ROS framework .bag files are used to record published topics, they can then be played within the ROS 

framework, to develop nodes. In the context of demonstrator I for example, a ROS bag containing BCI data 

can be recorded, and then played back as if the BCI module were connected and generating data. Whilst at 

this stage of the project the various data sources are not integrated, e.g. BCI and HSS data recorded 

separately, the provision of data in the form of ROS bags does enable the SOIAA module to begin 

preliminary integration. For example, HSS data is currently available as a ROS bag, and we are in the 

process of determining whether the data is in a suitable format to be interpreted by SOIAA. Feedback will 

then be provided back to our partners SINTEF responsible for HSS development (please see D3.2). 

The Empowerment and Model Leaner sub-modules are the focal point of SOIAA, and a significant 

proportion of the remaining time in the CORBYS project will be focussed in fully integrating them within 

the CORBYS framework. Future deliverables D5.2 and D5.3 are concerned with improving the 

performance of these modules and SOIAA in general, which requires the integration into the demonstrator 

and the feedback of data stemming from the scenarios. For example, in M36 we will be delivering our 

Entropy Preserving State-space Reduction sub-module (D5.2) which essentially performs feature selection 
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upon the rich set of data that will be available in the demonstrators and which will significantly improve the 

efficiency and responsiveness of SOIAA in its empowerment calculations, and provision of accurate 

trajectories to low-level robot control. 

4.3 Software 

The Empowerment and Model Learner sub-modules of SOIAA are programmed in C++, within the ROS 

infrastructure in this project. This section outlines the details of the Empowerment and Model Learner code 

which will be contained within the ROS SOIAA node. 

4.3.1 External software dependencies 

The Model Learner and Empowerment sub-modules of SOIAA make use of two external libraries. The 

Eigen3 library is used for more efficient matrix computations, and the Boost Library is used for multi-

threading. The Eigen matrix library was selected for its versatility, speed, reliability and elegance 

(Tuxfamily, 2012): 

 Versatility: It supports matrices of all sizes, including sparse and dense matrices. It supports all 

numeric types and can be easily customised to support custom numeric types. It supports various 

matrix compositions, such as the Singular Value Decomposition employed in the Quasi-Linear 

Gaussian Empowerment Methods, and the Cholesky Decomposition used within the GP code of the 

Model Learner Module. 

 Speed: Eigen is fast, expression templates allow intelligent removal of temporaries, fixed size 

matrices are fully optimized, and dynamic memory allocation is avoided. 

 Reliability: All algorithms within the library have been selected for reliability favouring them to 

more unstable, but potentially faster approaches. The library has been fully tested in its own test-

suite of 500 executables and within the BLAS and LAPACK test suites. 

 Elegance: The API is clean and expressive, mainly due to its use of expression templates.  

The efficiency of Boost is such that many boost libraries have been incorporated into the C++ Standard 

Library. The Boost C++ library is used in a limited way in the project primarily for its extremely efficient 

and easy-to-use multi-threading algorithms.  

4.3.2 Empowerment Functions 

This sub-section contains a list of the important functions provided by the two header files in the sub 

module. They are specified in a C++ like pseudo code, as the modules are written in C++. Since both 

header files are wrapped in a ROS interface none of these functions should be callable outside of the 

SOIAA module, but the functionality described here will be provided by the SOIAA module, via the ROS 

wrapper, to the CORBYS architecture.   

Double Calculate_Empowerment_QLG(Matrix Transitionmatrix, double Powerlevel)  

This function computes the empowerment value of a state, given the transition matrix between the agent’s 

actions and actuators. It implements the fast approximation via the quasi-linear Gaussian methods, 

discussed in section 3.X. Both input and output variables are assumed to be continuous, but are not in itself 

part of the calculation, which determines empowerment purely based on the transition matrix, and the 

amount of power that can be allocated. In this implementation noise is assumed to state-independent and 

isotropic; e.g. noise introduced in the sensor measurement, which does not differ in amount regardless of 

the state the agent is in.  
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Double Calculate_Empowerment_Cov(Matrix CovarianceMatrix, double Powerlevel, 

int NumberOfInputs, int NumberOfOutputs)  

This function computes empowerment for a state, based on the covariance matrix between inputs and 

outputs. This allows empowerment to be calculated from the output of a Gaussian process learner. 

Internally, this is realized by reducing the problem to a transition matrix and a noise covariance matrix, and 

then further reformatting the problem so the noise is isotropic. This process is outlined in 3.X. The resulting 

transition matrix can then be used to call Calculate_Empowerment_QLG(). This allows the integration 

of state-dependent noise levels into the empowerment calculations. 

Double Calculate_Empowerment_Discrete(Matrix Conditio nalProbability)  

This function provides empowerment calculation for discrete random variables, based on the conditional 

probability of the sensor states, conditioned on the actuator states. It uses the Blahut-Arimoto Algorithm, 

described in section 3.X, to determine the channel capacity achieving distribution, and returns the resulting 

empowerment value. Note that the calculation for large state spaces becomes very time consuming, and 

cannot be performed in real time. Nevertheless, this function will be used to ‘sanity check’ the 

empowerment values of the quasi-linear Gaussian methodology, and hence will be employed within the 

demonstrators as a diagnostic tool. 

Double Calculate_Empowerment_Monte_Carlo(Matrix Action_State_Pairs)  

This function computes the empowerment for a continuous problem by reducing it to a discrete conditional 

probability distribution and then calling Calculate_Empowerment_Discrete() . The process is 

described in section 3.X. Its input is a matrix containing the combination of input values and resulting states. 

The algorithm assumes that Gaussian Noise is added to the resulting states, and the resulting overlap in 

output distribution is then used to compute the probability for mix-up error in a discrete channel that would 

approximate this world dynamics.  

4.3.3 Model learner functions 

Matrix create_Transitionmatrix(Matrix Action_State_Pairs)  

This function creates a linear transition matrix, usable for calling Calculate_Empowerment_QLG() , 

based on sampled data points, presented to the function as combination of action and resulting states. The 

input data for this function can either be obtained by repeatedly sampling starting from a specific state (if an 

external simulation model is supplied), or data can be reused that has previously been recorded. Internally it 

uses a least square error method based on the Penrose pseudo-inverse to construct a linear transformation 

matrix to fit the data. This code implements a very basic, but fast method of creating the transition matrix 

required by the empowerment functions. 

Matrix create_ GPCovariance matrix(Matrix Action_State_ ResultingState_Triplet s)  

This function implements the majority of the functionality of the Model Learner sub-module. It creates a 

covariance matrix, usable for calling Calculate_Empowerment_Cov() , based on sampled data, 

presented to the function as a combination of action/state/resulting state triplets. Internally, the function 

creates the multiple univariate GPs outlined in Section 3.4.1. 

4.4 Performance Criteria 

4.4.1 Test class 
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As the sub-module is not yet fully integrated into the overall CORBYS project, the only testing currently 

done on the sub-modules is the automated testing of their modular functionalities. To do so, we 

implemented a test class which can be compiled as either a separate program, or later integrated into a 

larger self-test routine for the finished SOIAA module, which calls all relevant functions of the sub-

modules, and checks if they return values as expected, or behave according to specifications. This will 

allow us to test the correctness of currently implemented code at the time of compilation, even if we later 

have to refactor or change parts of the code.  

4.4.2 Speed – multithreading 

As outlined earlier, the largest degree of speed up in the empowerment calculation is achieved by using an 

appropriate approximation. For example, the quasi-linear Gaussian method can calculate in seconds what 

the Monte-Carlo integration would calculate in hours. Nevertheless we also profiled our code to increase 

execution time, and implemented optional multi-threading, to take advantage of the two actual, or four 

virtual cores present in the Mac mini. Using this currently requires using the boost thread library.  

4.5 Hardware 

The ROS SOIAA software module will be stored on an Apple Mac Mini. The Mac Mini (Fig. 6) was 

selected for the project as it is small, light, energy efficient and computationally powerful.  

 

 

Fig. 8 Top and side views of the Apple Mac Mini that the ROS SOIAA module will be stored on within the 

demonstrator. 

The casing of the Mac Mini is made from durable aluminium, and the particular model used for the project 

has solid state hard drives, which are ideal for onboard computing in Demonstrator 1, and of course any 

accidental knocks the demonstrator might sustain. More detailed specification of the Mac Mini is provided 

by Table 1. 
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Table 1: Mac mini specifications 

Physical Specification 
Dimensions (l × w × h) [mm] 36 × 197 × 197 

Weight [kg] 1.22 kg 

Electrical Specification 
Voltage (internal)  [V]  12 

Power Rating [W] 85 

Electrical Connectors USB 2.0 Ports 4 

Ethernet RJ45 Connector 

FireWire FireWire 800 port (up to 800 Mbps) 

Miscellaneous HDMI, Thunderbolt, SDXC card slot, Audio 

in/out, IR receiver 

Computing Specification 
Processor 2.5GHz dual-core Intel Core i5 (Turbo Boost up 

to 3.1GHz) with 3MB L3 cache 
Hard drive 500GB (5400-rpm) hard drive 

RAM 8 GB (1600MHz DDR3 memory) 

Graphics Intel HD Graphics 4000 

Communication 

WIFI 802.11n Wi-Fi wireless networking; 

IEEE 802.11a/b/g compatible 

Bluetooth Bluetooth 4.0 wireless technology 

Ethernet 10/100/1000BASE-T 

The Mac mini internal voltage is 12V, whereas the demonstrator will be running 24V. There are various 

other power considerations that the demonstrator has with regard to supplying the correct power to various 

modules. Therefore a centralised power converter solution may be implemented that can supply a variety of 

power levels to the various modules. However, we have also investigated how to convert the 24V 

demonstrator 1 power supply to the 12V supply needed for the Mac mini, basically a DC/DC converter. In 

discussion with OBMS we have determined that the Traco power TEP 100-2412 DC/DC converter will suit 

the task (Fig. 7). 

 

Fig. 9 Traco power TEP 100-2412 DC/DC converter 

The Mac mini will be fixed to the demonstrator with 2 Velcro straps. Two Mac minis were purchased. One 

will be onboard the demonstrator and the other, an identical model, will be used for development. This 

should speed up the setup time at integration, as integrating our hardware will then happen on the onboard 
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clone of the development machine, and facilitate the transfer of the developed software to the target 

machine. 

5. Requirements from deliverables D2.1 and D2.2 

Table 2 lists the relevant requirements for the Self Organising Informational Anticipatory Architecture 

(SOIAA) from D2.1 and how these have been fulfilled or implemented. 

Table 2 Model Learner sub-module requirements as outlined in D2.1 

Req. # Name Description Realization 

SOIAA1 Sensorimotor data 

from the robot 

platforms 

To develop and train a first prototype of the 

SOIAA algorithm UH requires a large data set of 

Sensorimotor data from the robot platforms. This 

data set should comprise low level sensor values, 

time stamped, regarding various robot 

components or other available information, such 

as from the BCI (synchronized with the robot), 

and would include, but not be limited to: 

 positions 

 orientations 

 velocities 

 accelerations 

 forces 

 absolute positions/orientations if 

available 

 proprioceptive information about 

actuator activity 

 BCI channel information 

 (semantic) tags  of events; especially to 

be used for debugging 

Sensor data is now 

starting to become 

available from various 

sources. Once integration 

has been performed, the 

various sensor data 

sources will also be 

integrated, providing 

SOIAA with a complete 

picture of the state-space 

of the demonstrators. 

Prior to full integration, 

the UH team are 

providing feedback on 

suitable data formats (of 

HSS data for example), 

and investigating the 

suitability of the various 

data sources for the 

various use cases and 

user scenarios. 

SOIAA2 Documentation 

Sensorimotor data 

from the robot 

platforms 

The sensor motor data should be accompanied by 

a document relating parameter values to the 

respective sensors and actuators and detailing the 

type of the parameter, its minimal and maximal 

values and other relevant information. 

Furthermore, it should identify which of the 

provided parameters would be available on the 

onboard robot system prototype, and which of 

them are supplementary “lab-only” data which 

will only be available as test and training data 

(e.g. hand-created semantic tags, absolute 

positions determined with sensors outside of the 

robot, etc.). 

Initial documentation for 

the available BCI and 

HSS data was provided 

in deliverable D3.2. In 

turn feedback is being 

provided and this 

reciprocity will be 

maintained with provides 

for all other data sources. 

SOIAA3 Parameter Space 

Specifications 

For SOIAA to take full advantage of the 

information-theoretic methodology it is based 

on, it would be highly desirable for SOIAA to 

have additional information available about all 

the parameters and data points provided by the 

CORBYS sensorimotor command loop. This 

should address questions such as, but not limited 

to: 

To apply the 

information-theoretic 

methodology to full 

effect, it is necessary that 

quantitative, low-level 

data is made available to 

the SOIAA component.  
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 Is the parameter continuous or discrete? 

 If discrete, what are the possible state 

transitions? What is the topology of the 

parameter space? 

 If continuous, what are the extreme 

values the variable can assume; what is 

the manifold structure of the parameter 

space? 

 What is the resolution of the physical 

sensor measuring the continuous 

variable? 

 What is the value measured in (meter, 

degrees, etc.)? 

 

 

Parameter space 

specifications are in the 

process of being 

generated for various 

data sources through 

previously mentioned 

proliferation of 

documentation. Much of 

the specifications 

regarding resolution have 

been decided by the 

specification of the 

General Purpose 

Network (GPN).  

SOIAA4 Structural 

Information 

regarding 

Parameter Space 

 - An operational structure formalizing 

the effects of and constraints on actions 

(outputs) on the values of the overall 

system,  formalized in mathematical 

terms, such as e.g. semigroup or Lie 

group action, invariances, and similar; 

 - An interventional structure indicating 

which variables are causally subject to 

change if a certain action (output) 

variable is changed. One form in which 

this could be expressed is as a Causal 

Bayesian Network on the variable 

space.  

If such explicit structures are not available a 

priori, weaker substitutes which can be derived 

from empirical data could be used instead, 

among others e.g.: 

 Laplacian models of data (Kondor & 

Lafferty, Diffusion kernels on graphs 

and other discrete input spaces, 2002) 

 graphlet library e.g. (Kondor, 

Shervashidze, & Borgwardt, 2009) 

It would be an advantage 

if the SOIAA component 

would have access to 

further information about 

the structure of 

parameter space. 

 

Initial models of the 

demonstrators are being 

provided by UB. In 

addition, a model learner 

module was specified in 

D2.2 and is part of this 

deliverable. The model 

learner is designed to 

work with empirical data 

and is based on Gaussian 

Process regression. 

SOIAA5 Self-motivated 

gait and goal 

generator 

Variations of Klyubin’s (Klyubin, Polani, & 

Nehaniv, 2005a) (Klyubin, Polani, & Nehaniv, 

2008) Empowerment methodology are used to 

identify both, salient, high empowered states and 

trajectories in the state space of the human-robot 

system. 

The self-motivated gait 

and goal generator 

(Empowerment 

Calculator Module) 

forms the core of this 

deliverable. It is indeed 

based on Klyubin’s 

methodology but has 

been extended to work in 

continuous state space, 

and in real-time using the 

previously described 

quasi-linear Gaussian 

approximation. 

Furthermore, the 

interface between the 

self-motivated gait and 

goal generator and the 
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model learner has also 

been developed as part of 

this deliverable as 

previously described. 

SOIAA6 Models and 

algorithms for the 

identification and 

anticipation of 

human purposeful 

behaviour 

The “Relevant Goal Information” approach, a 

specific kind of conditional Bayesian modelling, 

will be used to identify the most likely 

candidates for sub goals from the salient, high 

empowered output states of SOIAA5. 

This module is 

dependent on SOIAA5 

Now that the self-

motivated gait and goal 

generator (generic 

empowerment module) 

has been developed. It is 

possible to extract 

suitable goals in the form 

of high empowered 

output states (goals) 

using a greedy 

maximisation approach 

for both demonstrators.  

Preliminary 

implementation results 

for generic fast 

empowerment 

calculation are included 

as part of this deliverable 

(Salge, Glackin, & 

Polani, 2013).  

Hence, as this 

deliverable is a pre-

requisite for this 

capability of SOIAA, 

this requirement 

concerns the next 

deliverable D5.2. 

SOIAA7 Measurement of 

anticipatory 

information flow 

between robot and 

human and vice 

versa 

Different formalisms for “information flow” are 

to be used to get a quantitative measurement 

indicating the causal dominant partner in the 

symbiotic human-robot relation. 

Although the theoretical 

work for this deliverable 

has been performed, 

testing of the theory of 

anticipatory 

informational flow 

between the robot and 

human and vice versa 

can only be performed 

when suitable testing 

data is available. This 

data will only be 

possible to be generated 

after integration. Hence, 

this work forms the core 
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of deliverable D5.2. 

SOIAA8 Development of 

framework for 

transitional 

dynamics between 

robot-initiated and 

human-initiated 

behaviour 

The different quantitative outputs of SOIAA8 are 

to be combined with further data to construct a 

regulatory feedback control system that 

transitions the symbiotic human-robot 

relationship into one where the human has 

maximal causal control. 

Dependent on SOIAA7 

 

This requirement is 

concerned with D5.3, 

and hence will be 

realised much later in the 

development of the 

SOIAA module. D5.3 in 

turn is reliant on D5.2, 

which is in turn reliant 

on this deliverable. 

Nevertheless, work with 

regard to the 

development of the self-

motivated gait and goal 

generation, model 

learner, and initial work 

with information flow 

are encouraging. Hence 

we are getting a clearer 

picture of what is 

required here, and the 

ongoing communication 

with our clinical and 

control partners is also 

proving vitally important 

here. 

SOIAA10 Interactive Model 

of Robotic System 

For such a simulation model UH sees the 

following options: 

 a simulation model is provided by the 

robotics/human dynamics partners, e.g. 

if used in their own work. 

 

This option is highly desirable, even 

understanding that the model falls short of a fully 

accurate simulation of human motion, to capture 

the essential kinematic and dynamic properties 

of the system, as seen by the partners with the 

robotic/therapeutic expertise.  

 

 if option 1 is not feasible, UH will, as a 

fall-back option, have to resort to build 

such a model on its own. This will 

necessarily be only a coarse 

approximation of the human/robot 

system due to the lack of relevant 

system expertise on the side of UH, but 

is necessary to ensure practicable 

progress on the SOIAA architecture 

development while the prototype of the 

To allow a large number 

of runs under controlled 

conditions and allowing 

a flexible application and 

test of interventions by 

the SOIAA component, a 

simulation model of the 

human-robot system is 

strictly necessary. This 

model needs to provide 

an input/output interface 

of the sensorimotor 

command cycle of the 

model to the SOIAA 

component in accordance 

with above requirements. 

 

Initial interactive models 

within the ROS 
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CORBYS sensorimotor command loop 

is being developed for the hardware 

robots.  

 

The UH requirements for the simulation model, 

whether built by the relevant partners (option 1) 

or UH (option 2), needs to have the abilities 

described in the following section. If it turns out 

to be necessary to resort to option 2, it would be 

mandatory for UH to have the information 

required to build the simulation model. (see 

Requirement SOIAA11 and SOIAA12) 

framework are being 

provided for both 

demonstrators, enabling 

preliminary integration 

of SOIAA to be started. 

 

The SOIAA design was 

extended in D2.2 to also 

have model learner 

capability, to alleviate 

some of our initial 

concerns here. The 

model learner and the 

provision of simple 

models provided will 

enable the testing and 

integration of SOIAA. 

 

SOIAA11 Functional 

Dynamics 

The simulation system needs to have the 

following properties: 

 

 it provides a functional model of the 

robot-human system 

 it includes the dynamics of robot, 

sensor, motors 

 with and without safety filter (provided 

by the relevant partners) 

 it includes a dynamic model of human 

walkers 

 

Regarding the human model, a pragmatic 

approximation is sufficient. It is not expected or 

necessary to implement a high-accuracy model 

of human walk. A pragmatic model that is 

available early and can be used effectively is 

preferable to a high-quality model which is 

difficult to tune and use and is available late. 

A simple model has been 

provided that meets 

much of the criteria for 

the first demonstrator. 

Specifically, this is in the 

form of a MATLAB 

model (based on clinical 

empirical data), and 

containing a simple 

actuation model. 

Between this model and 

the model learner 

module we are aiming to 

produce a simulation 

system of sufficient 

accuracy so as to provide 

suitable state space 

prediction for the 

Empowerment 

Calculator Module. 

 

 

SOIAA12 Interventional 

Dynamics 
The model should provide an interface that 

would allow the SOIAA component to also 

directly influence the low level dynamics of the 

robotic system, such as joint controls, motors, 

etc., in addition to providing general behaviour 

cues (all, however, filtered through the 

protection of the safety unit). For testing 

purposes, it would also be highly desirable for 

the simulation model if world states could be 

directly influenced.  

Mandatory (conditional 

on SOIAA10) 

 

SOIAA’s role in the 

CORBYS demonstrators 

has been significantly 

clarified since this 

requirement was defined. 
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Although SOIAA will 

not directly produce 

control signals, it will 

produce trajectories for 

low-level control, and 

hence will have a cause-

and-effect perspective in 

the CORBYS 

demonstrators, which is 

crucial for the 

Empowerment 

Calculator module. 

SOIAA13 Target 

Specifications 

To work towards the overall project goals the 

SOIAA component will require a specification of 

the target behaviour of the robot-human system 

which suits the information-theoretic SOIAA  

framework. In particular, for demonstrator I, this 

requires a clarification how the therapeutic 

behaviour is to be integrated, and how teaching 

hints that the robot needs to give should be 

expressed in a form suitable to the SOIAA 

cognitive framework. 

1. toe walking 

a. CORBYS should restore: 

target angles;  

2. crouch gait 

a. CORBYS should restore: 

target angles 

3. stiff knee 

a. insecure weight transfer 

b. should restore knee angles 

4. stiff knee with circumduction 

a. insecure weight transfer 

b. excessive pelvic vertical 

movement 

c. should restore angles 

 

In general, it is necessary to communicate to the 

the SOIAA component in a suitable format as to 

what exactly should happen to help the human to 

regain healthy walking behaviour.  

 

To approach and phrase this in a more specific 

way, the following questions might be posed: 

 Is the insecure weight transfer a 

measurable effect? 

 If so, how could it be measured 

practically? 

 What are the desired target angles and 

in how far are they universally 

definable? 

 How is safe movement specified? 

 How is the robot supposed to give 

teaching hints? 

 How is a “normal” fixed move 

The on-going 

discussions with the 

clinical partners have 

greatly clarified the role 

SOIAA will play in the 

project, and how 

therapists will use the 

system. In particular, 

there are now various 

modes of operation of 

the first demonstrator, 

within which SOIAAs 

role changes. For 

example, the first mode 

of operation “Learning 

Mode” (deliverable 

D2.2) is concerned with 

gathering data, and hence 

SOIAA is passive here. 

As the modes progress, 

SOIAA’s role becomes 

more involved. In 

deliverable D2.2 in 

particular, the definition 

of user scenarios and 

various clinical 

requirements has 

superseded many of 

these initial concerns.  
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specified? 

 Can they be modulated, meaning that 

we could interpolate between the 

current and the target behaviour? 

 Intention extraction: What kind of high 

level behaviour should SOIAA identify? 

SOIAA14 Testing 

Specifications 

In later stages of the project it will also be 

necessary to integrate and test the SOIAA 

module with the actual robotic system, including 

tests of the powered orthosis with human 

subjects. For this, a safety filtering interface from 

our partners will be mandatory, which will 

ensure the safety of the human participant and 

the robot under commands initiated by the 

SOIAA component, as the SOIAA component, 

while striving to reproduce “natural behaviour” 

will not contain explicit safety provisions.  At 

that point, UH will also require (desirable) 

sufficient computational power to run the 

algorithm in online mode, to allow a system able 

to actively intervene in the synergic robot-human 

movement. As fall-back option for this case if 

the computational power is not available, UH 

will consider constructing simplified and 

computationally cheaper proxy quantities that 

would be replacing the full-fledged information-

theoretic concepts in the online settings. 

The safety framework of 

the first demonstrator, 

currently being under 

development, has indeed 

ensured that SOIAA 

does not have one of 

primary roles in ensuring 

safety. By design, 

SOIAA sits at the upper 

layer of the safety 

hierarchy so that aside 

from sanity checking 

SOIAA’s outputs, other 

lower layers of the 

hierarchy have a more 

active role in safety. This 

is guaranteed by 

ensuring the SOIAA 

does not implement low-

level control, but instead 

suggests trajectories. 

 

Sufficient computational 

power for SOIAA has 

been obtained by 

operating at the speed of 

the general purpose 

network, and by the 

quasi-linear Gaussian 

channel approximation 

version of the 

empowerment module. 

SOIAA15 Hardware 

Specifications 

In regard to hardware requirements, the actual 

CPU and memory requirements of SOIAA will 

be determined during the project, but in general 

UH strives to create an algorithm that has (in 

decreasing order of priority): 

 online capability 

 onboard capability 

 (desirable) online learning 

 

Since the information-theoretic algorithms 

proposed for SOIAA are rather CPU intensive, 

and UH will be looking into methods to create 

more efficient and possible more light-weight 

SOIAA does indeed use 

more efficient and light-

weight algorithms in its 

Empowerment 

Calculator module as 

previously described. 

Additionally, the 

hardware specification 

previously outlined 

ensures the 

Empowerment 

Calculator module can 
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versions of the algorithms for this purpose. In 

general, however, UH expects a need for 

substantial computational power, and once UH 

will have acquired more experience with the 

specific target domain our partners will be 

updated with more specific requirements. 

operate at the speed of 

the general purpose 

network. 
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Table 3 outlines the Model Learner sub-module of SOIAA as in D2.2. 

Table 3 Model Learner sub-module requirements as outlined in D2.2 

Module Name Model Learner Module (1
st
 Demonstrator Only) 

Owner UH (Polani, Salge, Glackin) 

Input Parameters  Training data 

Output Parameters  Model description 

Functionality (Optional Module – will only be implemented if no dynamical model is provided) – 

Describes the dynamic relationship between the sensor data and the actuator output to 

provide an anticipated outcome to the Empowerment module.  

Interdependencies 

with other modules 

Model will be developed with offline training data and provides necessary input to the 

Empowerment module. 

Implementation 

Status  

Early prototypes 

Platform  C++, (Windows or Linux) 

Testability and 

Acceptability Criteria 

Captured clinical data will be employed to test and quantify the error between the model 

of the system and the actual outputs of the system. An acceptable degree of accuracy 

will be determined heuristically to assess the acceptability of the model learner. 

Delivery date V1 Month 24 

Delivery Date V2 / 

UML/Block diagram See accompanying information flow UML diagram. 

Requirements 

addressed 

ADD1, ADD2, DAA3 

The requirements of the Model Learner sub-module have not changed. From the table we can see that the 

module was designed to be offline. In reality it can operate in the Learning mode of the first demonstrator 

but will likely be fully offline in the second demonstrator. Its functionality in providing anticipated 

outcomes to the Empowerment sub-module remains unchanged.  

Table 4 outlines the Empowerment sub-module of SOIAA as specified in D2.2. 

Table 4 Empowerment sub-module requirements as outlined in D2.2 

Module Name Empowerment Calculator Module (1
st
 Demonstrator Only) 

Owner UH (Polani, Salge, Glackin) 

Input Parameters  Current Value of all available Sensor Data (In a representation fitting to express 

any possible state of the overall state space) 

 Offline: Previous input of either 

a.) large amount of training data to build a model,  

or 

b.) alternatively a dynamic model of the overall system.  

 

Output Parameters a.) Empowerment Value of the current state 

b.) Empowerment Values of the immediately following states 

c.) List of high empowered follow up states (Likely Sub-goals) 

d.) High empowered trajectory through state space 

Functionality The functionality of the module will be equivalent to Alexander Klyubin’s Empowerment 

Formalism, with an implementation of the Blahut-Arimoto Algorithm to calculate the 

channel capacity. Extension to the continuous domain will likely be based on Tobias 

Jung’s formalisms for continuous empowerment.  

Alternative methods of implementation, which might provide benefits in terms of 

computational time or memory use, will be explored or developed as part of the research 

agenda in the CORBYS project.  
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Interdependencies 

with other modules 

The empowerment module takes two principle data types (model data, sensor data) and 

provides input to the action selector.  

Implementation 

Status  

Early prototypes  

Platform  C++, (Windows or Linux) 

Testability and 

Acceptability Criteria 

Based on a provided model the testing should employ generated sets of model data with 

known values for empowerment. Alternatively, more time-consuming methods to compute 

empowerment can be used to evaluate how well the implementation reflects the 

mathematical formalism.  

Another performance criterion for this module is the time needed to produce the 

empowerment value for the current state of the model.  

Delivery date V1 Month 24 

Delivery Date V2 / 

UML/Block diagram See accompanying information flow UML diagram. 

Requirements 

addressed 

ADD1, ADD2, DAA3 

Please note that the implementation status listed in the tables was as of Month 9, these modules have now 

obviously been implemented. 

The requirements of the Empowerment sub-module as outlined in D2.2 are likewise unchanged. Significant 

progress has been made in making the sub-module operate in near real-time speed by using a quasi-linear 

Gaussian channel approximation, although there are still more conventional Monte Carlo-based functions 

which can be used for diagnostic purposes that are also part of this deliverable (previously outlined). 
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6. Conclusions 

Concluding, for deliverable 5.1, and regarding the task and specifications outlined in D2.1 and D2.2 we can 

report that we provided our module as planned, within the expected timeframe. While there might be some 

minor adjustments and refinements to the empowerment calculation over the course of the CORBYS 

project we are positive that one of the most critical and most challenging parts of the SOIAA module has 

been achieved, namely the fast computation of empowerment. Computing Empowerment in real time was 

part of our research agenda, and a necessary condition for several future steps in the SOIAAs development. 

The fast implementation of empowerment work is published (Salge, Glackin, & Polani, 2013) and 

submitted as part of this deliverable. This now allows us to move forward as planned to address the coming 

issues.  

Specifically the integration of the Empowerment Module via the SOIAA Module and the ROS interface 

should allow us soon to actually apply the empowerment formalism to an actual robot. Furthermore, we can 

also move ahead in the implementation of the intention extraction module, which will be delivered in D5.2.  

In relation to the scientific community we can also report that we were able to publish most of the results 

reported in this deliverable in (Salge, Glackin, & Polani, 2013), and we are planning further publications 

disseminating this content in 2013. Also, the UH CORBYS team has been invited to present the 

empowerment developments at the Workshop for Guided Self-Organization 2012 in Sydney, and at an 

IROS Workshop on ‘Metrics of sensory motor integration in robots and animals’.  
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